About Us
News
Announcement
Research
Conservation & Horticulture
Public Education
Graduate Study
Scientist
International Cooperation
Resources
Annual Reports
Publications & Papers
Visit XTBG
Societies
XTBG Seminar
Open Positions
4th XSBN Symposium
CAS-SEABRI
PFS-Tropical Asia
Links
 
   Location:Home > Research > Research Progress
Dwarf and Increased Branching 1:good candidate gene for crop improvement
Author: Zhang Xiaojia
ArticleSource:
Update time: 2020-10-10
Close
Text Size: A A A
Print

Optimizing plant architecture is an efficient approach for breeders to adapt crops to changing environmental conditions and hence to potentially improve yields to meet the demands of a growing global population. Plant height and shoot branching play crucial roles in determining plant architecture, and they are mainly regulated by phytohormones, including brassinosteroids (BRs) and gibberellins (GAs). 

Medicago truncatula is a model legume speciesbut the molecular mechanisms underlying the control of axillary bud outgrowth by GAs in M. truncatula remain largely unknown. 

 In a study published in Journal of Experimental Botany, researchers from Xishuangbanna Tropical Botanical Garden (XTBG) report the identification and characterization of the dwarf and increased branching 1 (dib1) mutant in M. truncatula, which exhibits extreme dwarfism and an increased number of lateral branches. 

 The researchers conducted phylogenetic analysis and amino acid sequencing. The results showed that DIB1 encodes a gibberellin 3β-hydroxylase (GA3ox) enzyme, catalyzing the final step of the biosynthetic pathway for bioactive GAs. 

They further found that endogenous concentrations of GA4 and GA1 were decreased in the dib1 mutant. The exogenous application of GA3 rescued the mutant phenotypes, indicating that DIB1 was necessary for GA biosynthesis in Mtruncatula. 

The results suggested that DIB1, a GA biosynthetic gene, might positively regulate the expression of MtBRC1, a key integrator of numerous signals, to control axillary bud outgrowth via influencing the biosynthesis of bioactive GAs in M. truncatula.  

“Our findings thus shed light on the control of axillary bud outgrowth by GAs in legumes. DIB1 could be a good candidate gene for breeders to optimize plant architecture for crop improvement,” said Prof. CHEN Jianghua, principal investigator of the study. 

Contact 

CHEN Jianghua  Ph.D Principal Investigator    

Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, Yunnan, China              

E-mail:  jhchen@xtbg.ac.cn  

 

Gibberellins inhibits axillary bud outgrowth in Medicago truncatula (image by ZHANG Xiaojia) 

  Appendix Download
Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences. Menglun, Mengla, Yunnan 666303, China
Copyright XTBG 2005-2014 Powered by XTBG Information Center